Exercise 36

For the following exercises, solve the equations over the complex numbers.

$$
x^{2}-6 x+10=0
$$

Solution

The two terms with x, x^{2} and $6 x$, cannot be combined, so it's necessary to complete the square to solve for x. Recall the following algebraic identity.

$$
(x+B)^{2}=x^{2}+2 x B+B^{2}
$$

Notice that $2 B=-6$, which means $B=-3$ and $B^{2}=9$. Add and subtract 9 from the left side and apply the identity.

$$
\begin{gathered}
\left(x^{2}-6 x+9\right)+10-9=0 \\
(x+(-3))^{2}+1=0 \\
(x-3)^{2}+1=0
\end{gathered}
$$

Now that x appears in only one place, it can be solved for. Subtract 1 from both sides.

$$
(x-3)^{2}=-1
$$

Take the square root of both sides.

$$
\begin{aligned}
\sqrt{(x-3)^{2}} & =\sqrt{-1} \\
& =i
\end{aligned}
$$

Since there's an even power under an even root, and the result is to an odd power, an absolute value sign is needed around $x-3$.

$$
|x-3|=i
$$

Remove the absolute value sign by placing \pm on the right side.

$$
x-3= \pm i
$$

Add 3 to both sides.

$$
x=3 \pm i
$$

Therefore, $x=\{3-i, 3+i\}$.

